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APPROXIMATION OF CONTINUOUS TIME STOCHASTIC 
PROCESSES BY A LOCAL LINEARIZATION METHOD 

ISAO SHOJI 

ABSTRACT. This paper investigates the rate of convergence of an alternative 
approximation method for stochastic differential equations. The rates of con- 
vergence of the one-step and multi-step approximation errors are proved to be 
O((zAt)2) and O(zAt) in the Lp sense respectively, where A?t is discrete time 
interval. The rate of convergence of the one-step approximation error is im- 
proved as compared with methods assuming the value of Brownian motion to 
be known only at discrete time. Through numerical experiments, the rate of 
convergence of the multi-step approximation error is seen to be much faster 
than in the conventional method. 

1. INTRODUCTION 

It is often convenient to model the time evolution of dynamic systems by using 
continuous time stochastic processes whose dynamics are characterized by stochas- 
tic differential equations. However, except for a simple process, it is difficult not 
only to estimate parameters of continuous time stochastic processes from real data, 
but also to obtain a good discrete approximation of the processes. To overcome 
the intractability of continuous time stochastic processes, many methods have been 
proposed. For example, Kutoyants [4] and Yoshida [11] have proposed estimation 
methods for stochastic differential equations by using the maximum likelihood tech- 
nique. On the other hand, Milstein [5, 6], Riumelin [9], Chang [1], and Newton [7] 
have proposed approximation methods by using Taylor's expansion or Runge-Kutta 
methods. Although these estimation and approximation methods are useful for each 
purpQse, it seems more convenient to use a unified method for both purposes. 

Ozaki [8] and Shoji and Ozaki [10] propose alternative methods, called a local 
linearization method, which are used for both estimation and approximation pur- 
poses. In particular, the method proposed by Shoji and Ozaki [10] shows better 
performance in estimation through numerical experiments than the method pro- 
posed by Ozaki [8] and the Euler method. From a theoretical point of view, it 
seems interesting how close the process approximated by the local linearization 
method is to the true process. This, however, has not been fully investigated. 

The aim of this paper is to evaluate the goodness of approximation for the local 
linearization method proposed by Shoji and Ozaki [10] in terms of the rate of 
convergence. When evaluating the rate of convergence, the previous studies focus 
on the mean squared approximation error defined as the difference between the 
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true process and the approximate process. Considering the approximation error, 
we should note that two kinds of approximation errors may be defined; one is an 
error on one-step approximation, and another on multi-step approximation. 

The one-step approximation error has important implication in estimating pa- 
rameters of a process. As is described above, estimation is usually carried out by 
the maximum likelihood method, and its likelihood is generally constructed from 
the distribution of a one-step ahead state. Since the exact distribution cannot be 
obtained except for a simple process, some approximation methods must be used. 
Thus, the better the rate of convergence of the one-step approximation error, the 
more efficient likelihood is expected to be obtained. However, as long as assuming 
that the value of Brownian motion is known only at discrete time, except for the 
special case, the rate of convergence of the mean squared errors of one-step ap- 
proximation is shown to be no faster than O((At)3) by Riimelin [9], where At is 
discrete time interval. Instead of the above assumption, we may assume that the 
squared value of Brownian motion is used as well or the value of Brownian motion 
is continuously known. In this case, Milstein [5, 6] and Chang [1] show that the rate 
of convergence of the one-step approximation error can be improved. Indeed, this 
approach is effective in improving the rate of convergence, but is not appropriate 
in estimation because it is difficult to obtain the likelihood. 

On the other hand, the rate of convergence of the multi-step approximation 
error must be considered when constructing a sample path of a stochastic process. 
Specifically, to obtain a sample path of a stochastic process, we first discretize 
the original stochastic process by an approximation method and generate step-by- 
step sample points of the discretized process. The step-by-step approximation of a 
sample path can be improved by shortening the discrete time interval and so this 
improvement can be evaluated from the multi-step approximation error. However, 
as reported by Newton [7], Clark and Cameron [2] have shown that the multi- 
step approximate process can converge to the true process in the root-mean-square 
sense, that is the L2 sense, no faster than linearly in the discrete time interval. 

In this paper, we study the rate of convergence of the one-step and multi-step 
approximation errors induced by the local linearization method. Unlike the previous 
studies, the rate of convergence is evaluated in the Lp sense instead of the L2 
sense. In addition, numerical experiments are carried out to evaluate numerically 
the rates of convergence of the one-step and multi-step approximation errors. In 
the experiments, we compare the local linearization method with the conventional 
discretization method. 

The organization of this paper is as follows. In section 2, the alternative ap- 
proximation method is introduced, and in section 3, the rates of convergence of 
the one-step and multi-step approximation errors are presented. Numerical experi- 
ments are carried out in section 4 and some concluding remarks are given in section 
5. 

2. DISCRETIZATION BY THE LOCAL LINEARIZATION METHOD 

In this section, we describe the local linearization method proposed by Shoji 
and Ozaki [10] and derive a discretized process. First-, we are interested in a one- 
dimensional stochastic process xt which satisfies the following stochastic differential 
equation: 

(1) dxt = f (xt, t)dt + g(xt)dBt, 
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where f (xt, t) is twice continuously differentiable with respect to xt, and continu- 
ously differentiable with respect to t, g(xt) is a continuously differentiable function 
of xt, and Bt is a standard Brownian motion. The above stochastic differential 
equation can be transformed into a differential equation with a constant coeffi- 
cient of the diffusion term. Let p(x) be a function such that g dp = :, where a is 
constant. By Ito's formula the stochastic differential equation of Yt = 0(Xt) is 

d_ g2 d2p No (2) dyt = (f1 + 2 dx) dt +?dBt. 

Thus, we have only to consider the following stochastic differential equation: 

(3) dxt- f (xt, t)dt + udBt, 

where f(xt, t) is defined on W x [0, Tb). We assume that W is a compact set in 
the one-dimensional Euclidean space, Tb is fixed, O x and 2f exist and are 
continuous on W x [0, Tb), and that a is constant. 

The local linearization method is a method of approximation by which the drift 
function f (xt, t) in (3) is locally approximated by a linear function of xt. Thus, we 
need to focus on the local behavior of f (xt, t). This behavior can be formulated 
by the differential of f(xt, t) and so this differential can be characterized by Ito's 
formula, which gives 

(4) df 2 Ox2 + at dt + ?x dx. 

Now, in order to linearize f with respect to xt and t, we assume that %X2(Xt,t), 

Y33 (Xt, t), 3f (Xt, t) are constant on the small time interval [s, s + At). With this 
assumption, (4) can be solved as follows: 

(5) f (xt, t) - f (X,s) = ( 2 
02 + af )(t - s) + Of 

Thus, 

(6) f (xt, t) Lsxt + Mst + Ns) 

where 

Ls = aOf(xs,s), Ox 
ai2O2f Of 

Ms = 2 O2 (xs, s) + a (Xsv) 

Ns= f (x, s) -f (X s)x S- ( 2 0 (Xs) s) + - (Xss)) s. 

Therefore, instead of (3) we have only to focus on the following linear stochastic 
differential equation as long as t belongs to [s, s + At): 

(7) dxt = (Lsxt + Mst + Ns)dt + udBt. 

Transforming xt into Yt = e-Lstxt, the stochastic differential equation with respect 
to Yt can be solved as follows: 

s+jet s++f t 
(8) Ys+A\t = Ys + (Ms + Ns)e -L,udu + a e- L,udBu 
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As a result, we obtain a discretized process of xt: 

(9) Xs+(t s + ls (eLst - 1) + Ms {(eLst - 1)- L At} 

s+A\t 

+ a j eLs(s+?t-u)dBu, 

where 

Ls= , Of (Xs s) f 

Ms = a2 a2f 
(Xs,s)? at(Xs,S). 

The above discretized process is easy to manipulate since the fourth term of the 
right-hand side of (9) follows the Normal distribution with mean 0 and variance, 

(10) e2Ls\t _ 1 
2LsAt 

3. RATE OF CONVERGENCE OF THE LOCAL LINEARIZATION METHOD 

In this section, we give the rate of convergence of the one-step and multi-step, 
approximation errors. Here, we define the one-step and multi-step approximation 
errors as the difference between the state of the true process and that of the ap- 
proximate process on the assumption that the current state of the true stochastic 
process, xs, is known and bounded. The rate of convergence is evaluated in the Lp 
sense. 

Recalling that a Brownian motion does not have finite variation for any time 
interval, the process xt satisfying (3) or (7) cannot be expected to be bounded. 
In a practical situation, however, no infinite state of a process can be treated. 
Therefore, by introducing a stopping time, we establish a bounded process induced 
by xt. First, for each M > 1, a stopping time TM is defined as follows: 

(11) TS,I { inf {tlt > s, lBt-BsI > M}; xsI < M. 

Clearly, TM is non-decreasing and limM, TM = oc, almost surely. By taking xt 
as XTMAt, we may assume xt to be a bounded process. In addition, making M 
sufficiently large, we may assume s < TMj. Now, T is fixed such that s < T < oo 
and T < Tb. In this setting, we can easily get the following known results. 

Lemma 1. If q(u) = O(uq), then fJu q(w)dw = O(uq+l ). 

Lemma 2 (Gronwall's inequality, see Karatzas and Shreve [3]). Suppose 

0 < g(t) < a(t) +,j g(u)du, 

then, 

g(t) < a(t) + /e3t a(u)e-13du. 

Lemma 3. Suppose s < t < T, then there exists a function 0 such that, 

Es |Xt -Xs q < 0(t -S), 
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where Es is designated as conditional expectation on time s and 0(u)= O(u2) or 
g?1 

O(u 2 ) depending upon 'Whether q is even or odd. 

Lemma 4. Let Xt and Xit be the true stochastic process and the approximate sto- 
chastic process derived from the proposed local linearization method. Suppose that 
Of Of a2f and a z exist and are continuous on W x [0, T]. Then, there exists a 
a-x' ajt' aX 2 axat 
constant C such that 

t 
If (xu, u) - (su + Msu + Ns) ldu 

< c ((t-s) + J xu -xslPdu) lxs-,sjP +?J'xu - xsl 2Pdu 

0+ (2 P (t S)P i+l I (t _S)2p+l Jt + 2 + - + - ~+f ~iju -;ujPdu} 

where s < t < T. 

Using the above lemmas, we prove the following theorem which presents the rate 
of convergence of the one-step approximation error in the Lp sense. 

Theorem 1. Suppose that Xt and Xt are the true stochastic process and the approx- 

imate process derived from the proposed local linearization method, respectively. Let 

a p-th order error of one-step ahead prediction be defined as Eslxt - ;xtjP with 

s < t < T. Then, the rate of convergence of (Es xt - ;it IP)l/P is 2, in other words, 

Es Xt -_6tjp = O((t -S)2p) 

where Es is designated as conditional expectation on time s. 

Proof. 

|xt -.Xt |P = Xs - ?jX5 +J(f(Xu,u )-(Ls.u + Msu + Ns))du p 

< 2p-1 lX5-:s sP + J(f(xu, u) - (Ls.u + Msu + Ns))dut) 

< 2p-1 (X5- 'sjP + (t - s)P-l Jf(xu)-(Ls + Msu + Ns)IP d) 

The second line and the third line are derived from Jensen's inequality and H6lder's 
inequality, respectively. From Lemma 4, 

t 

f(xu u) - (Lsu+ Msu + Ns) lpdu 

s~~~~~~~~~~~ 
< c{ ((t - s) + j lxu- XsPdu) lxs-XsjP 

t rt 

+ ixu - ulPdua ? j xu xsl2Pdu 

? (2+ (X2 )P (t - S)P+l ? 1 (t - S)2p+l } 

2 p I I; 1 P 2p+ 1 
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Since the one-step ahead prediction error is considered, we may assume x, = xs. 
Therefore, 

E,lxt - tVP < 2P-1(t - s)P-0C{Es [ft xu- iuPdu] +Es [jt r- X S2Pdu] 

+(2+ 2)P (t-s)P+1 I (t-S)2P?1} 
+ +2 p p+ I 2P 2p+ I 

From Lemma 1 and Lemma 3, 

(12) Es [j Ixu - Xs2Pdu] < (t -s), 

where 0(u) = Q(uP+?). Thus, 

(13) Eslxt - sitVlP < a(t - s) + iEs [ Ixu- iu Pdu] 

where, 

a(u) 2P_ p- 0(u) + (2 + ? -up 2P1CuPl$(u+ \ 2]p+12P3p l 

3 = 2P-'C(T-s)P- 

From Gronwall's inequality, 

rt 
(14) Es-xt-tP < a(t - s) + 3e/(t-s) j a(u - s)e-(u-s)du. 

Clearly, the right-hand side of the above inequality has order 2p. L 

Next, we prove a theorem which presents the rate of convergence of the multi-step 
approximation error. The multi-step approximation error exhibits the cumulative 
error of the local linearization. 

Theorem 2. Let t be fixed at s < t < T and {tk}O<k<n be an n-partition of the 
time interval [s, t] with tk - tkl = At. Consider a step-by-step approximation of 
integration 

ot st 
Xt -Xs = f (xu, u)du + /J dBU, 

by using the proposed local linearization method. Then the convergence of the step- 
by-step approximation is O(At) in the Lp sense. 

Proof. For s = to < t1 < ... < tn = t with tk - tkl = At, the step-by-step 
approximation of the local linearization is given by 

n tk n tk n tk 

], dc= (Lklxu+Mk-lu+Nk-l)du+Zv dBU, 
k=l k-1 k=1 k-1 k=1 k-1 
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where Lk-1, Mk_l and Nk-l are equivalent to Ltkl, Mtkl and Ntkl that are 
defined in (6). Since the left-hand side of the above equation is reduced to xt -xe 

n tk p 

|Xt- = | Itk (f(xu, u) -(Lk1- X + Mk1u + Nk-j))du 

n tk p 

< Sp-1 I (f(XU, u) -(Lk-1l9u + Mk-IU + Nk-1))du 

n rtk 

<rtn15(tk -tk-_) if(x,u) - (Lk1 ?Mklu?Nk1)lPdu 
k=1 k-1 

n rtk 

- (t - S ) j if (Xu ) - (Lk-lxu + MkuI +?Nk-l) ip du. 
k=1 tk- 1 

The second line and the third line are derived from Jensen's inequality and H6lder's 
inequality, respectively. From Lemma 4, 

stk 

i (Xu ) - (Lk1sxU + Mk_lu + Nk 1)lp du 

tk <C (At+ XU- Xtkl lPdu) Xtk-1 
- 

~tk-l lp 

rtk 

-(15) +C j XU- Xtk-1 I2Pdu 

tk 2+a2 P(At)P+ C (At)2p+l 
+2 ) p + 1 2P 2p+ l 

rtk 

+C/ lxu -:UjPdu. 
c k-1 

From Lemma 3, 

stk 

IXU-Xtk_ lPdu < pj (At), 

rt 

IXU-Xtk-li 2Pdu <_ (P2(Gt) 

where 91 (At) = O((At) 2+1) or O((At) P+1 ?1) depending upon whether q is even or 

odd and 02(At) = 0((At)P+1). For convenience of the proof, 91(At) and 02(At) 

are replaced by Atbl(At) and Atb2(At), respectively, where 0b1(At) = O((At)p) 

or 0((At)P+2) and q2(At) = O((At)P). Summing up the right-hand side of (15) 
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from to to tn, we get 

Ixt -tlp C(t -s)At(1 + b1(At)) Y - 6t__ | + C(t - (At) 
k=1 

+( (__t C(t -s) (At)2p 
+C(t-s)(2? ~2P +j 

+ 
2P 2p+lI 

t 

+cJ 1x"'- xu'Pdu, 

where C C(t - s)P-1. From Gronwall's inequality, 

(16) Eslxt -:tP < a(t - s) + !efl(t-s) j a(u - s)e/-(u-s)du 

where 

a(U) = Uw1(GAt)pn + Uw02(At)) 

Pn= Es Xtk Xtk| 

,b1 (At) = CAt(l + 1 (\At)), 
2 

_P_,_t P = (,At)2p 
'b2(At) = C02(At) + C (2? + ) ( +C 

Clearly, b1(At) = O(At) and '2(At) = O((At)p). Rewriting the above inequality 
by using b1(.), '/2(Q) and G(.), 

(17) Es-xtV-t3P < /b1(At)G(t - s)pn + 'b2(At)G(t -s), 

where 

G(t - s) = (t - s) + 3e13(t-S) (u - s)e-O(u-s)du. 

Then, 

(18) Pn+1 - Pn <? IGPn + 42G. 

Noticing that 01G is non-negative and that p1 = IXs i ' = 0, 

(19) Pn < (1 + 0NG)n-h1l2 _ '2 
'b1 'b1 

Using (17) and (19), we get, 

(20) Eslxt -xtjP < (1 + ,1G) n-1 2G. 

Since n = (t - s)/At, 

log ((1 +?'bG)n-I) - n I 
n,01Glog (I +l 1G) 

'A Zt (t -s)VipG log (I +,1G) 
t t-sJ /t '1bG 

Since ,b1(At) -* 0 (At -* 0) and ,b1(At)/At -* C, the right-hand side of the above 
equality converges to a constant (depending on t - s). Noticing that '/2(At) = 
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O((At)P) and G is independent of At, (1 + ,1G)n-1/2G/(At)P also converges to a 
constant. D 

4. NUMERICAL EXPERIMENTS 

In this section, numerical experiments are carried out to evaluate the rate of 
convergence of the one-step and multi-step approximation errors induced by the 
proposed local linearization method. We compare the local linearization method 
(LL) with the Euler method (Euler) in the L1 and L2 sense. 

4.1. Method of experiments. For numerical experiments, the following nonlin- 
ear stochastic differential equation is used: 

(21) dxt =-xt(x 2- )dt + dB,. 

To evaluate numerically the rate of convergence of the one-step ahead approxima- 
tion error, we first calculate a At ahead state of the true process, xt+At. Since it 
is difficult to obtain the exact discretized process of (21), we use an approxima- 
tion method to get a realization of xt+At. Considering that almost all numerical 
experiments are carried out by the Euler method, we also use this method in our 
experiments. This approximation is reasonable if the discrete time interval is suf- 
ficiently small. Hence, applying repeatedly the Euler method with discrete time 
interval Atg and setting At -_mAt9, we calculate a At ahead state and assume it 
to be xt+At. This calculation is carried out as follows. Let xt be an initial state and 
{ Si}0<i?m be an m-partition of time interval [t, t + At], where si - si- = Atg. 
Applying the Euler method to (21), we get, 

(22) xsi = Xsi51 + f (Xsi_1 )(s - si-1) + (Bs, - Bsi21)v 

where f(x) = -x(x 2- 1) and Bs, - Bs-_ is a realization of a Normal random 
variable with mean 0 and variance Atg. Then we assume xsm to be a realization 
of xt+At. In our experiments, we set Atg = 1/4000 and use the four alternative xt 
and At; xt = 0.0, 1.0, 2.0, 3.0 and At = 0.005, 0.01, 0.02, 0.04. 

Secondly, we construct a At ahead state, xt+?At, induced by the LL method. 
This is obtained from (9). While the deterministic part of (9) is easy to calculate, 
we use the following approximation to calculate the stochastic part: 

t+?At m Si 

(23) eLt (tAtu)dBu eLt (tAtu)dBu 
t ~~~~~i=l si-i 

m 

ZeLt(t+At-si-1)(Bsi-B521) 
i=l1 

Lastly, averaging N (= 10000) realizations of xt+At - xt+?At P derived from the 

above procedures, we get Etlxt+At - xt+AtIP (p = 1 or 2). 
Next, to evaluate numerically the rate of convergence of the multi-step approx- 

imation error, we first set up an n-partition of time interval [t,t + 1]; that is, 
t = to < tl < - < tn = t + I and tk-tkl = At. For each k-step, the above 
procedure is used to get a realization of the At ahead approximation error, where 

Xtkl t and s tk1 are used as the initial states of the true process xt and the approx- 
imate process xt, respectively. Like the evaluation of the one-step approximation 
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TABLE 1. One-step approximation error 

Et Ixt+At - Xt+At I Etlxt+At - Xt+At 12 

LL Euler LL Euler 
Xt = 0.0 At 

0.005 1.50938e-05 0.000153496 3.72941e-10 3.71496e-08 
0.01 2.5451le-05 0.000440247 1.24931e-09 3.02164e-07 
0.02 6.18635e-05 0.00124171 1.08285e-08 2.38862e-06 
0.04 0.000235754 0.00346198 2.09957e-07 1.79897e-05 

xt = 1.0 At 
0.005 3.79232e-05 0.000312567 2.7568e-09 1.56451e-07 
0.01 0.000117147 0.000904327 2.8217e-08 1.31725e-06 
0.02 0.000446495 0.00255695 4.05045e-07 1.09742e-05 
0.04 0.00176649 0.00717693 6.22168e-06 9.34308e-05 

xt = 2.0 At 
0.005 0.000178436 0.0278133 5.65982e-08 0.000777987 
0.01 0.000377579 0.0557419 2.94886e-07 0.00314094 
0.02 0.00119972 0.107707 3.20086e-06 0.011835 
0.04 0.00443204 0.198674 4.4913e-05 0.0408887 

xt = 3.0 At 
0.005 0.000628459 0.10717 6.66681e-07 0.0115074 
0.01 0.00192129 0.207632 6.17473e-06 0.0432641 
0.02 0.00874093 0.378569 0.000109119 0.144213 
0.04 0.0413803 0.637447 0.00208985 0.410556 

error, averaging N (= 10000) realizations of xt+1 - xt+1iP, we get Et xt+1 - xt+? P 

(p = 1 or 2). We use the same values of xt and At as in evaluation of the one-step 
approximation error. 

Similar to the LL case, the rate of convergence of the one-step and multi-step 
approximation errors induced by the Euler method is evaluated. 

4.2. Results of experiments. Results of experiments for the one-step and multi- 
step approximation errors are shown in Table 1 and Table 2 respectively. For all 
cases, the errors induced by the LL method are much smaller than the errors induced 
by the Euler method. In particular, the differences between the two methods for 
multi-step approximation are very pronounced. The efficiency of the LL method 
in multi-step approximation mainly follows from the construction of a stochastic 
integration. In the LL method, the stochastic integration (23) uses the information 
of increments of a Brownian motion with time interval zXtg. In the Euler method, 
however, the sum of increments of a Brownian motion is reduced to Bt+? -Bt 
and so the intermediate information is lost as a result. Thus, the LL method 
shows much better performance than the Euler method. Of course, in practice, the 
information of increments of a Brownian motion cannot be expected to be used in 
constructing such a stochastic integration as (23). However, since we know that 
the stochastic integration of (23) follows the Normal distribution, a sample path 
of the approximate process can be generated without numerical error caused by 
constructing the stochastic integration. 
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TABLE 2. Multi-step approximation error 

Et lxt+l - t+ I Et lxt+l 
LL Euler LL Euler 

Xt = 0.0 
At n 
0.005 200 0.000283681 0.170943 1.30954e-07 0.0500009 
0.01 100 0.000660692 0.178169 7.13403e-07 0.0557444 
0.02 50 0.00179558 0.181939 5.25284e-06 0.0589751 
0.04 25 0.00495413 0.183869 4.08175e-05 0.0606949 
Xt = 1.0 

'At n 
0.005 200 0.000340106 0.342291 1.85408e-07 0.219675 
0.01 100 0.000771964 0.372901 9.5541e-07 0.270491 
0.02 50 0.00214957 0.390301 7.46015e-06 0.302821 
0.04 25 0.00612755 0.399641 6.07739e-05 0.321292 
xt = 2.0 

At n 
0.005 200 0.000450752 0.835303 3.46061e-07 0.8527 
0.01 100 0.000817214 0.968199 1.17836e-06 1.16991 
0.02 50 0.00213726 1.052 7.83151e-06 1.40262 
0.04 25 0.00605888 1.10001 6.46092e-05 1.54841 
Xt = 3.0 

At n 
0.005 200 0.000535419 1.3057 5.21037e-07 1.79508 
0.01 100 0.00091965 1.60859 1.61988e-06 2.75481 
0.02 50 0.00234248 1.82524 1.07743e-05 3.5837 
0.04 25 0.00687399 1.96071 0.000105844 4.16684 

5. CONCLUDING REMARKS 

In this paper we studied the rate of convergence of the one-step and multi- 
step approximation errors induced by the alternative approximation method called 
a local linearization method. In particular, unlike previous studies, the rate of 
convergence was evaluated in the Lp sense instead of in the L2 sense. 

For discrete time interval At, the rate of convergence of the one-step approxima- 
tion error is O((At)2) in the Lp sense, which is faster than any other approximate 
processes derived from the assumption that the value of Brownian motion is known 
only at discrete time. On the other hand, the rate of convergence of the multi-step 
approximation error is O(At) which is optimal as shown by Clark and Cameron [2]. 

Through the numerical comparison of the rate of convergence, it was shown that 
the approximate process derived from the local linearization method was much 
closer to the true process in one-step and multi-step approximation than the ap- 
proximate process derived from the Euler method. In particular, the efficiency 
of the local linearization method in multi-step approximation has important im- 
plication for generating a discrete sample path of a diffusion process. The process 
discretized by the local linearization method follows the Normal distribution and we 
know how to simulate a random variable following the Normal distribution. Thus, 
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there is no approximation error resulting from the construction of a stochastic inte- 
gration of the discretized process. To a large extent, samples generated by the local 
linearization method can be treated as a good approximation of the realization of 
the true process. 
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